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Abstract. We define a block persistence probability pl(t) as the probability that the order parameter
integrated on a block of linear size l has never changed sign since the initial time in a phase-ordering
process at finite temperature T < Tc. We argue that pl(t) ∼ l−zθ0f(t/lz) in the scaling limit of large
blocks, where z is the growth exponent (L(t) ∼ t1/z), θ0 is the global (magnetization) persistence exponent
and f(x) decays with the local (single spin) exponent θ for large x. This scaling is demonstrated at zero
temperature for the diffusion equation and the large-n model, and generically it can be used to determine
easily θ0 from simulations of coarsening models. We also argue that θ0 and the scaling function do not
depend on temperature, leading to a definition of θ at finite temperature, whereas the local persistence
probability decays exponentially due to thermal fluctuations. These ideas are applied to the study of
persistence for conserved models. We illustrate our discussions by extensive numerical results. We also
comment on the relation between this method and an alternative definition of θ at finite temperature
recently introduced by Derrida [Phys. Rev. E 55, 3705 (1997)].

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 05.40.+j Fluctuation phenomena,
random processes, and Brownian motion – 05.20.-y Statistical mechanics

1 Introduction

Phase-ordering processes [1] correspond to the dynamics
of systems quenched from a disordered high temperature
state to a temperature where the equilibrium state is or-
dered. Dynamics proceed through coarsening of ordered
domains and the domain linear scale L(t) diverges as t1/z.
In the coarsening regime, nontrivial spatial and tempo-
ral correlations develop, adopting a scaling form. For in-
stance, the order parameter equal time correlation func-
tion 〈ϕ(x, t)ϕ(0, t)〉 = f(|x|/L(t)).

Universality classes depend not only on the space di-
mension and the symmetries of the order parameter, as
for static critical phenomena, but also on the conservation
laws of the dynamics. Indeed, for a single static universal-
ity class, several dynamics can be used with the only con-
straint that they must obey detailed balance. For a scalar
order parameter, nonconserved dynamics (model A) de-
scribe a ferromagnet, while conserved dynamics (model B)
describe demixtion or segregation in binary alloys. Con-
sequently, the set of dynamical critical exponents such as
z and λ, defined by 〈ϕ(x, t′)ϕ(x, t)〉 ∼ [L(t)/L(t′)]λ, for
t′ � t, is not related to static exponents by any hyper-
scaling law.

A remarkable point is that, as far as the temperature T
of the quench is concerned, there are only two universality
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classes, namely T = Tc (critical quenches) or T < Tc.
This is assessed by numerics, renormalization group re-
sults or large-n expansions [1]. More precisely, two-point
correlations have the same scaling (up to multiplicative
constants) for any T < Tc. Therefore the temperature is
an irrelevant parameter for T < Tc quenches, and one may
set T = 0 as well.

However, the situation is not as simple if one consid-
ers quantities involving more subtle correlations. One such
quantity, which has attracted much interest recently, is
the persistence probability, defined as the probability that
the local order parameter at a given point x has never
changed sign since the initial time [2–4]. For instance, in
simulations of the Glauber Ising model, p(t) is the frac-
tion of spins that have never flipped since the initial time.
At T = 0, p(t) is the probability that a given point has
never been crossed by a domain wall. It usually decays
with an exponent p(t) ∝ t−θ. For general nonequilibrium
dynamics, p(t) is the probability that a zero-mean stochas-
tic quantity has never changed sign since the initial time.
The analytical study of p(t) is difficult due to the fact
that it probes the whole history of the process. Even for
simple scalar diffusion with a zero-mean random initial
condition, a nontrivial algebraic decay is found [5,6]. At
Tc, the persistence of the global magnetization was shown
to yield a new independent critical exponent for the Ising
model [7,8].

The temperature universality of the T < Tc scaling of
correlations, corresponding to a single fixed point T = 0
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in the renormalization group, seems to be broken for the
local persistence p(t), because at T > 0 thermal fluctu-
ations lead to an exponential decay of p, in contrast to
the power law decay at T = 0. To address this question,
Derrida [9] recently proposed to study persistence at finite
temperature for nonconserved Ising and Potts models by
comparing two systems A and B evolving with the same
thermal noise from two different initial conditions. Sys-
tem A is initially in a completely random configuration
whereas B is in its fundamental state (all spins assuming
the same value). Persistence is now defined as the prob-
ability r(t) that SAi S

B
i (t) has kept a constant sign since

t = 0. The underlying idea is to discard simultaneous flips
(at the same site) in both systems, because flips in B are
only due to thermal fluctuations.

The implementation of this simple idea by Derrida [9],
and more extensive simulations performed by Stauffer [10],
have shown that r(t) decays algebraically. For the Ising
model, the observed exponent seems to be temperature-
independent and equal to the T = 0 local persistence ex-
ponent θ. Therefore universality seems to hold with this
new definition of persistence. However, the method can-
not be used for conserved models, as system B would not
evolve. Since Kawasaki (spin-exchange) dynamics freeze
at zero temperature, a definition of persistence at finite
temperature applying to conserved models is required.
Moreover, Derrida’s definition is not easy to generalize
to continuous models. A definition involving a single sys-
tem would be more satisfactory, as we know from the
study of damage spreading that behaviors of observables
obtained by comparison of two systems evolving with the
same noise often depend on the Monte-Carlo algorithm
used (see below).

In a recent letter [11], we introduced the notion of
block persistence as a very natural method to give a
temperature-independent and intrinsic definition of the
persistence exponent. The method is in a way an à la
Kadanoff implementation of the renormalization group
ideas underlying the universality of correlations. The block
persistence probability pl(t) is the standard persistence
probability for a coarse-grained variable obtained by in-
tegrating the order parameter on a block of linear size l.
In [11], we argued that the large l scaling of pl(t) is inde-
pendent of T and corresponds to the T = 0 fixed point,
because increasing l reduces the relative thermal fluctua-
tions of the block variables.

In this article, we give a more detailed and general
discussion of block persistence, which we illustrate with
extensive simulations of different coarsening models. The
structure of the paper is the following. We start by re-
viewing in Section 2 a few mathematical results needed to
discuss persistence for physical models.

In Section 3, we comment further on Derrida’s com-
parison method and check its intrinsicality. We show that
even if the persistence exponent does not seem to depend
on the algorithm used, the cross-over to Tc and the T > Tc
behavior of the persistence probability is completely dif-
ferent for heat-bath and Glauber dynamics.

In Section 4, we start from a general discussion of
global persistence below Tc, and define block persistence
as a natural way to include in a single framework the
global and the local persistence exponent, through its scal-
ing for l → ∞ with l/L(t) fixed at T = 0 and T > 0. At
T = 0, we explicitly prove the postulated scaling form for
the diffusion equation and the large-n model. We show
that block scaling leads to an easy numerical determina-
tion of the global persistence exponent θ0. We present nu-
merical results for several systems, illustrating the previ-
ous discussion.

In Section 5, we move to finite temperature and justify
that the scaling should be the same as at zero tempera-
ture, because the thermal exponential decay is eliminated
in the scaling limit of large blocks. Thus block persistence
provides a definition of local persistence at finite tempera-
ture. We present simulations for the Ising and Potts mod-
els, illustrating temperature universality. We also discuss
the T = Tc case.

In Section 6, we discuss the special case of conserved
order parameter dynamics. Block scaling works as for the
nonconserved case, but for an important feature: in the
scaling, the global persistence exponent, which is zero for
consrved models, must be replaced by a generally speaking
nontrivial exponent θ′. This point is illustrated by simula-
tions of one-dimensional models. We also show numerical
results for two-dimensional Kawasaki dynamics at finite
temperature.

2 Mathematical and general results

Before moving to physical problems, we would like to sum-
marize a few useful mathematical results. Consider a gen-
eral stochastic process X(t), with 〈X(t)〉 = 0. We are
interested in the probability p(t) that X(t′) > 0 for all
0 ≤ t < t′.

This is an old problem in probability theory [12,13],
but a difficult one, and despite the large number of pa-
pers devoted to this subject, very few quantitative results
are known, most of them concerning stationary and Gaus-
sian processes, which are completely determined by their
correlator C(τ) = 〈X(t)X(t + τ)〉. With these strong re-
strictions, p(t) still cannot be computed analytically, even
in the large t limit. Actually, p[t, C(τ)] is known only for
very few specific correlators [12,13]. One of these correla-
tors is C(τ) = e−aτ , which is the general correlator of a
Markovian stationary Gaussian process with the condition
C(0) = 1, for which

p(t) =
2

π
arcsin(e−at) (1)

and p(t) ∼ (2/π)e−at at large t.
Generally speaking, p(t) and its asymptotic large t de-

cay depend sensitively on the whole function C(τ) and not
only on its behavior for small or large τ . For instance, Ma-
jumdar and Sire [14] have considered the Gaussian process
with C(τ) = (1− ε)e−τ + εe−2τ . Despite the fact that C
decays as e−τ at large τ for all ε < 1, simulation of the
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process shows that p(t) ∝ exp(−a(ε)t), where a(ε) inter-
polates continuously from 1 to 2 when ε is varied from 0
to 1. In [14], the Markovian correlator was used as a start-
ing point for perturbative and variational approximations,
which are however uncontrolled.

The following rigorous results for any stationary Gaus-
sian process with zero mean are also very useful [12,13]:

p[t, bC(τ)] = p[t, C(τ)] (2)

p[t, C(bτ)] = p[bt, C(τ)] (3)

(∀τ, C1(τ) ≥ C2(τ)) ⇒ (∀t, p[t, C1(τ)]≥p[t, C2(τ)]). (4)

From the first relation, we see that p is completely deter-
mined by the normalized correlator C(τ)/C(0). The sec-
ond relation will be used to obtain scaling forms for per-
sistence probabilities in the following. Finally, the third
relation shows that p(t) decays exponentially in time for
a stationary Gaussian process with a correlator that is
bracketed for all τ by two Markovian correlators e−b|τ | ≤
C(τ) ≤ e−a|τ |, because then p(t) is also bracketed by two
exponentials. Most of the correlators encountered in physi-
cal nonequilibrium processes actually have this property in
a proper time variable (see below). However, there might
be power law prefactors in the large t decay of p(t).

Of course, in nonequilibrium dynamics, stochastic pro-
cesses are scarcely Gaussian and, by definition, never sta-
tionary in physical time. However, if there is scaling rel-
atively to a dynamically diverging scale L(t), one must
have for large t and t′

a(t, t′) =
〈X(t)〉X(t′)〉√
〈X2(t)〉〈X2(t′)〉

= f [L(t)/L(t′)], (5)

with f(x) = f(1/x). This implies the stationarity of the

process X(t)/
√
〈X2(t)〉 in the variable u = lnL(t).

Now if the process is Gaussian, we obtain that gener-
ically p(u) decays as e−θ̄u and therefore p(t) decays as

L(t)−θ̄. For most systems L(t) ∝ t1/z and we recover
the power law decay in time with θ̄ = zθ. The sim-
plest example of such a Gaussian process is the diffusion
equation (see below). Still, because the process is non
Markovian, θ̄ cannot be computed analytically and an
independent interval approximation was used to predict
accurately θ̄ [5,6].

To end with this general discussion, we consider the
following situation, which will be of use in the study of
block persistence. Consider a family of Gaussian processes
indexed by a variable l > 0, {Xl(t)}, with normalized
correlators al(t, t

′), with the following scaling property

al(t, t
′) = h(t/lz, t′/lz). (6)

Then obviouslyXl(t)=X1(t/lz), leading to p(t)=p1(t/lz).

3 Comparison of systems

Now let us come back to coarsening processes. Consider
the nonconserved Ising dynamics. At T = 0, p(t) ∝ t−θ,

where θ is nontrivial and seems to be independent of other
exponents. This is due to the fact that spins cannot flip
when they are within an ordered domain. Flips occur only
at interfaces between domains, and the slow surface ten-
sion driven motion of these interfaces makes for the slow
decay of p.

The situation is dramatically different at finite tem-
perature, because thermal fluctuations allow energetically
forbidden flips. These activated flips occur with a decay
rate τ ∼ e−∆E/kBT , where ∆E is a typical energy bar-
rier to flip a spin inside a domain, of order the exchange
constant J . Therefore, these thermal flips lead to an ex-
ponentially decaying p(t) ∝ e−t/τ (see Sect. 5).

Why then is there a unique scaling of correlations at
finite T < Tc? The reason is that the domain structure in
the scaling regime is the same at any T < Tc. The thermal
fluctuations cancel out in the two point correlations, which
reflect only the alternation of domains of different phases.
The temperature dependence of the value of the bulk mag-
netization (approximately equal to its equilibrium value)
just leads to a temperature dependent multiplicative con-
stant in the scaling function.

From this point, it becomes clear that a sim-
ple temperature-independent definition of θ should be
through the probability r(t) that a given site has never
changed phase, i.e. has never been crossed by a domain
wall. At T = 0, we clearly have r(t) = p(t), and at T < Tc
because of the universality of the domain dynamics, r(t)
should have the same decay as at T = 0.

Derrida [9] proposed a very clever scheme to implement
this idea for the nonconserved Ising model by simulating
two systems A and B evolving with the same Monte-Carlo
dynamics, with the same thermal noise. System A is pre-
pared in a completely random initial condition, whereas
B is prepared in the fundamental state (all spins equal
to one). Then both systems are updated simultaneously
using the heat-bath algorithm with the same random num-
ber z at the same site i:

SAi (t+∆t) = sign

[
1 + tanh(β

∑
i S

A
i (t))

2
− z

]
(7)

SBi (t+∆t) = sign

[
1 + tanh(β

∑
i S

B
i (t))

2
− z

]
. (8)

Then, the fraction of persistent spins r(t) is defined as
the fraction of sites for which SAi S

B
i has kept a constant

sign since t = 0. It means that we discard flips that oc-
cur simultaneously in both systems, because flips in sys-
tem B are purely thermal fluctuations, as there is a single
+ phase. Accordingly, Derrida found that at finite tem-
perature T < Tc, r(t) ∝ t−θ, with θ consistent with the
T = 0 persistence exponent. This was confirmed by ex-
tensive simulations performed by Stauffer [10].

However, this practical definition of persistence for the
Ising model is not completely satisfactory. First, it cannot
be directly adapted to continuous models. Indeed, for a
continuous order parameter the probability of a simulta-
neous flip in both systems will be zero in continuous time.
A further restriction is that the method cannot be used
for conserved dynamics, as the Kawasaki spin-exchange
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dynamics, because system B would not evolve from a uni-
form initial condition. There is no proper initial condi-
tion for system B. This restriction is important, because
Kawasaki dynamics cannot be studied at zero tempera-
ture, and therefore a definition of persistence at finite tem-
perature is required. Finally, one would be more satisfied
to get an intrinsic definition of persistence. The compar-
ison of two systems evolving from different initial condi-
tions has attracted much attention, especially in relation
to the notion of damage spreading [15]. It was soon real-
ized that the behavior observed depends on the implemen-
tation of the Monte-Carlo algorithm. Therefore, one could
fear that Derrida’s definition may work only with the heat
bath algorithm. To check this, we performed simulations
with the heat-bath algorithm and the Glauber algorithm.
We find that the T < Tc behavior is the same for both dy-
namics. However, quite interestingly, the T ≥ Tc behavior
of r(t) is completely different.

For heat-bath dynamics, for T > Tc, r(t) reaches a
plateau. This corresponds to the fact observed by Derrida
and Weisbuch [16] that above Tc two systems evolving
with this algorithm become identical within a finite time.
When T → Tc, this plateau crosses over to a power law
r(t) ∼ t−θc . From simulations at Tc we find θc ≈ 0.9,
but θc can also be extracted from a scaling analysis of
the cross-over for T → T+

c . At finite T > Tc, there are
no domain walls. Starting from an infinite temperature
state with a correlation length ξ = 0, ξ increases to reach
its equilibrium value ξeq. In the vicinity of Tc, ξeq ∼
(T − Tc)

−ν is very large. Therefore, at early times, for
ξ(t) � (T − Tc)

−ν the system behaves as if it were to
reach a critical (infinite ξ) equilibrium state, i.e. as if it
were at Tc, and ξ(t) ∼ t1/zc while r(t) ∼ t−θc . Deviations
from this power law behavior appear only at late times
when ξ(t) approaches the finite value ξeq and r(t) reaches
a plateau. Consequently we expect the scaling form

r(t) ∼ (ξeq)
αg[ξ(t)/ξeq] ∼ t

−θcf [t(T − Tc)νzc ], (9)

where f(x) ∝ xθc when x → ∞ and f(x) tends to a con-
stant when x→ 0.

This scaling behavior is illustrated in Figure 1, which
shows results of simulations of heat bath dynamics for
the two dimensional Ising model at different temperatures
above Tc. The best scaling is obtained with θc = 0.9 (ν = 1
and zc = 2.17). It is quite surprising to obtain a new
exponent at Tc (see the discussion for block persistence
below), and one should wonder whether this exponent is
universal or if it depends on the chosen algorithm.

If we consider another frequently used algorithm, the
Glauber dynamics, which corresponds to the update rule,

Si(t+∆t) = Si(t) sign

[
1 + tanh(βSi

∑
j Sj(t))

2
− z

]
(10)

and using the same z at the same site for system A and
B, we find a very different behavior of r(t) above Tc. As
shown in Figure 2, it now decays faster than any power
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Fig. 1. Scaling behavior of the fraction of persistence spins
r(t), from Derrida’s definition, for the Ising model with heat-
bath dynamics when T → T+

c . Simulations were carried out
on a 10002 lattice and 20 samples were averaged. The data
collapse is obtained with θc = 0.9, α = νzc, with the exact
value ν = 1, and zc = 2.17. The scaling function goes to a
constant at small argument and diverges as a power law at
large argument.

law. At Tc, it is difficult to distinguish from our simula-
tions performed on a 15002 lattice, averaging over 20 sam-
ples, whether r(t) decays exponentially or as a power law
with an exponent θc bigger than 2.4 (the value extrapo-
lated from our data). Anyway, we do not find the exponent
θc = 0.9 found for heat-bath dynamics. Thus, this expo-
nent is not intrinsic, neither is the T > Tc behavior of r(t)
(similar results have also been found by Hinrichsen and
Antoni [17]).

This illustrates the kind of problems that can be en-
countered using observables defined by the comparison of
two systems. Note however that, as said before, the large
t decay of r(t) below Tc is the same for both dynamics,
and therefore seems to be intrinsic. The cross-over in the
vicinity of T−c will be, of course, different. One could be
tempted to relate the different behavior obtained above
Tc to damage spreading properties of the dynamics. The
question of damage spreading is to know whether the dis-
tance (in configuration space) of two copies of a same sys-
tem, evolving from two slightly different initial conditions,
diverges (damage is said to spread), or keeps bounded
(damage is said to heal). For the two-dimensional Ising
model, damage heals for heat-bath dynamics and spreads
for Glauber dynamics. However, in one dimension, damage
heals for both dynamics, and we have checked that both
dynamics lead to an exponential decay of r(t). Therefore,
the absence of damage spreading is not a sufficient con-
dition to obtain the saturation of r(t), which seems to be
due to a very specific property of heat-bath dynamics in
two dimensions.

In the rest of the article, we describe a completely
different approach to finite temperature persistence,
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Fig. 2. Decay of the fraction of persistent spins r(t), with
Derrida’s definition, for the Ising model with Glauber dynamics
at T = Tc, 1.005Tc and 1.1Tc, from simulations on a 15002

lattice (20 samples). Above Tc, r(t) decays faster than any
power law, in contrast with heat-bath dynamics. At Tc, r(t)
also seems to decay faster than algebraically, but one cannot
positively rule out a power law decay with a large exponent θc
bigger than 2.4 (the extrapolated exponent from our data).

involving a single system, which therefore avoids such dif-
ficulties and can be applied to continuous and conserved
models.

4 Block persistence at zero temperature

We consider the nonequilibrium dynamics of a noncon-
served order parameter ϕ(x, t), which can be either con-
tinuous or discrete. The case of a locally conserved order
parameter will be postponed to Section 6. We first discuss
block persistence at T = 0, because as we will see later
the scaling properties of pl are temperature independent.

Actually, introducing block persistence is also quite
natural at zero temperature, because it provides a link
between the global and the local persistence probabil-
ities. Block scaling will be shown below to be a very
effective way of determining the global persistence ex-
ponent θ0, corresponding to the global order parameter
M(t) =

∫
ϕ(x, t)dx. This global persistence exponent has

been extensively studied at Tc [7,8,18,19]. Here, we would
like to thoroughly discuss the T < Tc case. We shall
assume T = 0, but the discussion would be the same
at any T < Tc.

4.1 Global persistence

First, we remark that while the stochastic process
{ϕ(x, t)} (at a given point) is generally speaking both non
Gaussian and non Markovian, {M(t)} is always Gaussian
in the thermodynamic limit. Indeed, the magnetization

vector M = (M(t1), ..., M(tn)) is the sum of an infinite
number of random vectors Φ(x) = (ϕ(x, t1), ..., ϕ(x, tn)).
Since the correlation length for ϕ is finite at t1, ..., tn,
the Φ vectors have short range correlations and the cen-
tral limit theorem entails that the magnetization vector
M is Gaussian, for every choice of an arbitrary number n
of times. This is precisely the definition of the fact that
the whole process {M(t)} is Gaussian (which is stronger
than just saying that M(t) is Gaussian at any t). For a fi-
nite system, there are non Gaussian corrections due to the
fact that the number of independent contributions to the
magnetization vector is finite and of order V/L(tn)d, if tn
is the largest of the ti. These non Gaussian contributions
will be important only at long times of order V z/d.

Therefore, for an infinite system, the global persistence
probability is completely determined by the two-time cor-
relator

ag(t, t
′) = 〈M(t)M(t′)〉/

√
〈M2(t)〉〈M2(t′)〉. (11)

The analytical determination of θ0 is consequently sim-
pler in principle than for θ (for θ, a nonlinear Gaussian
approximation was used by Majumdar and Sire [14]). At
T = Tc, Majumdar et al. [7] have been able to compute
an ε expansion of the the global exponent θc for model A.
For T < Tc, there is no natural perturbation parameter as
ε. The analytical study of θ0 can be performed using the
methods of [14] in dimensions d ≥ 3 [20].

Interestingly there is a relation between the autocor-
relation exponent λ and θ0 when M is a Markov process

θ0z = λ− d/2. (12)

This relation is the consequence of the scaling of cor-
relations and is the counterpart of a similar scaling
law at Tc [7].

To show equation (12), we use the fact that the Gaus-

sian process M(t)/
√
〈M(t)2〉 is stationary in the scaling

limit as a function of u = lnL(t) (see Sect. 2), with

ag(t, t
′) = f [L/L′] = c(|u− u′|). (13)

The two point correlator C(k, t, t′) = LλL′
d−λ

g(kL′) in
the scaling regime for t′ � t. If g(0) = O(1), which is the

case for nonconserved models, 〈M(t)M(t′)〉 ∝ [L/L′]
λ
L′
d

while 〈M2(t)〉 ∝ Ld, and we obtain,

ag(t, t
′) ∼

[
L

L′

]λ−d/2
∼

[
t

t′

](λ−d/2)/z

, for t′ � t. (14)

Up to this point, the results are general and valid for a non
Markovian process. Now, if the normalized M is Marko-
vian, then necessarily c(|u− u′|) = exp(−θ0z|u− u′|) (see
Sect. 2). In other words f(x) = x−θ0z for all x ≥ 1, and
since equation (14) expresses that f(x) ∼ x(d/2−λ) for
x� 1, we obtain equation (12). Note that the lower bound
λ ≥ d/2 proposed by Fisher and Huse [21] ensures that
θ0 is nonnegative. Below, we shall demonstrate that M is
Markovian for the T = 0 one dimensional Glauber model,
and we shall find that θ0z = 1/2 = λ − d/2 (λ = 1),



116 The European Physical Journal B

but, generally speaking, equation (12) is violated because
M(t) is non Markovian and f(x) is not a pure power law.
The Markovian value of θ0 is neither an upper nor a lower
bound (see numerical results in Sect. 4.5).

The direct determination of θ0 is quite difficult. One
has to record the time when the magnetization first
changes sign, for a very large number of runs, which limits
drastically the sample size. Cornell and Sire [22] simulated
the two dimensional Ising model on a L = 8 to 128 lat-
tice, and were obliged to use a finite-size scaling analysis
that did not prove very conclusive, leading to a large un-
certainty on the value of θ0 ≈ 0.06 ∼ 0.11. We shall see
below that block persistence, which we now define, leads
to a much easier determination of θ0.

4.2 Block persistence

The idea is to define a more general quantity, the block per-
sistence probability, that coincides with the global and the
local persistence in different limits. The procedure is very
natural: we consider a coarse-grained variable ϕl(x, t), ob-
tained by integrating scales smaller than l. The simplest
procedure is to integrate ϕ over a block of linear size l, as
will be done for numerical simulations of lattice spin mod-
els. Alternatively, one can also eliminate Fourier modes of
wavelength smaller than l, as will be more convenient for
the analytical treatment of continuous models. The block
persistence probability pl(t) is just the persistence proba-
bility for the coarse-grained variable. For l =∞ we recover
the global persistence, while for l = 0 (or 1 on a lattice)
we get the local persistence.

Now, for finite l, the time dependence of pl interpo-
lates between the two exponents θ and θ0. Indeed, at early
times, when L(t) � l, the system effectively sees infinite
blocks, and pl(t) ∝ t−θ0 . Then for L(t)� l, blocks behave
as single spins, and pl(t) ∼ clt

−θ. Therefore, we expect a
scaling form of pl(t) for l→∞ with a fixed ratio l/L(t)

pl(t) ∼ l
−αg(L(t)/l) = l−αf(t/lz), (15)

where f(x) ∝ x−θ0 when x→ 0 and f(x) ∝ x−θ when x→
∞. α must be equal to zθ0 because for finite t and l →∞,
pl(t) must tend to the global persistence probability.

This scaling form can be demonstrated for two ana-
lytically tractable models closely related, namely the dif-
fusion equation and the large-n limit of the O(n) non-
conserved model. The reason is that in both models, the
process {ϕ(x, t)} is Gaussian, entailing that all coarse-
grained variables are also Gaussian, and pl(t) depends
solely on the normalized correlator

al(t, t
′) =

〈ϕl(x, t)ϕl(x, t′)〉√
〈ϕ2
l (x, t)〉〈ϕ

2
l (x, t

′)〉
, (16)

which can be computed analytically.

4.3 Diffusion equation

The diffusion equation may be the simplest example of
nonequilibrium dynamics. It is not really a coarsening

model, because of the absence of domain walls due to the
linearity of the equation. Consider a scalar field ϕ evolving
according to

∂ϕ

∂t
= ∇2ϕ, (17)

from a random initial condition with zero mean 〈ϕ〉 = 0
and short range correlations 〈ϕ(x, 0)ϕ(x′, 0)〉 = ∆δ(x −
x′). For this model, the global magnetization is conserved,
leading to θ0 = 0.

Integrating the equation in Fourier space, we obtain
the Fourier transform of the correlator

C(k, t, t′) = 〈ϕ̃(k, t)ϕ̃(−k, t)〉 = ∆e−k
2(t+t′). (18)

Computing the two time correlator

C(t, t′) =
∑
k

C(k, t, t′)

leads to the normalized correlator

a(t, t′) =
C(t, t′)√

C(t, t)C(t′, t′)
=

(
4tt′

(t+ t′)2

)d
4
. (19)

This correlator yields a nontrivial persistence exponent,
which can be reproduced with an excellent precision using
an independent interval approximation (IIA) [5,6].

As remarked before, considering blocks of size l is
equivalent to introduce an upper cut-off in Fourier space
λ ∼ 1/l, and to consider

ϕl = (1/
√
V )

∑
|k|<λ

ϕ̃(k) exp(ik.x).

The correlator of the corresponding block variables is,

Cl(t, t
′) = 〈ϕl(x, t)ϕl(x, t

′)〉 =
∑
|k|<λ

C(k, t, t′). (20)

The ϕl variables are Gaussian, and the behavior of pl(t)
depends only on the normalized correlator al(t, t

′).

aλ(t, t′) =

( √
tt′

t+ t′

)d
2 F (λ2(t+ t′))√

F (λ2t)F (λ2t′)
= H(λ2t, λ2t′)

(21)

with F (x) =
∫ x

0 y
d−1e−y

2

dy. From the final discussion

of Section 2, we have pl(t) = p1(t/l2), which is precisely
the scaling form assumed from physical arguments,
with α = 0.

The probability pl(t) cannot be explicited, but we can
obtain its asymptotic behavior. For t, t′ � l2, or for λ →
∞ one has

aλ(t, t′) ∼ a(t, t′) (22)

i.e., we recover the one point two-time normalized cor-
relator, leading to a nontrivial exponent θ. Then, in the
opposite limit of large blocks (or small times) t, t′ � l2,
one has aλ(t, t′) = 1 + O(λ2(t + t′)), which corresponds
to a nonevolving field. The scaling of the block per-
sistence probability is therefore conform to the general
discussion above.
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4.4 Large n limit

Now, let us investigate the O(n) model in the large n limit.
As usual, we start from a n-components vectorial order
parameter ϕ with the Time Dependent Ginzburg-Landau
dynamics,

∂tϕα = ∇2ϕα − rϕα −
g

n
ϕαϕ

2. (23)

In the large n limit, ϕ2/n can be replaced by the average
〈ϕ2〉, where ϕ is now any component of the field, and one
obtains a linear self-consistent equation, which reads in
Fourier space,

∂tϕ̃(k, t) = −(k2 +R(t))ϕ̃(k, t), (24)

with R(t) = r + g〈ϕ2〉.
Hence, ϕ̃(k, t) = ϕ̃(k, 0)h(t)−1/2 exp(−k2t) with

h(t) = exp(2
∫ t

0
R(t′)dt′). The self-consistence condition,∑

k

|ϕ̃(k, t)|2 = V S(t), (25)

with the definition ϕ(k) = (1/
√
V )
∫
ϕ(x)ddx, leads to

the deterministic differential equation for h(t),

1

2
ḣ = rh+

g∆

V

∑
k

e−2k2t. (26)

The global magnetization m(t) = ϕ̃(0, t)/
√
V is just given

by m(t) = m(0)/
√
h(t). Therefore, m(t) is deterministic

(apart from the randomness of m(0)), and never changes
sign, which yields θ0 = 0. Equation (26) can be solved
using Laplace transform, but we do not need to know h(t)
here. The two-time correlator is

C(k, t, t′) = 〈ϕ̃(k, t)ϕ̃(−k, t)〉 =
∆e−k

2(t+t′)√
h(t)h(t′)

· (27)

The Gaussian process ϕ̄ = ϕ/h(t), has the same correla-
tor as the diffusion equation. More precisely, ϕ̄ obeys the
diffusion equation. Hence the rest of the demonstration is
the same as above. The persistence exponents θ, θ0 = 0
and the scaling function f are the same as for the diffusion
equation.

In these two soluble models, the scaling law of
equation (15) is valid for any t and any l, and not only
asymptotically in the large l large t limit as will be the
case in general. Remark also that the θ0 = 0 result recov-
ers two different behaviors of the global magnetization.
For the diffusion equation, the magnetization is exactly
conserved, whereas for the large n model it relaxes deter-
ministically to zero.

4.5 Results for global persistence

Thanks to the scaling form of equation (15), it is possible
to use block scaling to compute θ0 numerically. One eval-
uates pl(t) for different l, which can be done on a single

run, and then adjusts θ0 to obtain the best data collapse.
We present here some numerical results for three different
models, illustrating the three possible cases: θ0z equal to,
bigger than or smaller than λ− d/2. We also give a direct
derivation of the exact result θ = 1/4 for the one dimen-
sional Glauber dynamics (Majumdar et al. [7] used an in-
terface representation of the dynamics). Finally we show
a surprising relation between θ0 for the one-dimensional
XY model with power-law initial spatial correlations and
θ for the diffusion equation.

One-dimensional Glauber model

One-dimensional coarsening is quite special, since the crit-
ical temperature is zero. For the Glauber Ising model,
which is exactly soluble, the exact computation of θ was
really difficult, while θ0 is trivial since the global mag-
netization M(t) is Gaussian at any time, and Markovian
in the scaling limit. To show it, we just have to write
the evolution equation for the two-point correlation [23],
for t > t′,

2
∂C

∂t
(r, t, t′) = C(r + 1, t, t′) + C(r − 1, t, t′)− 2C(r, t, t′),

(28)

with C(r, t, t′) = 〈Sr(t′)S0(t)〉. Summing over r, we get,

2
∂〈M(t)M(t′)〉

∂t
= 0, (29)

hence, 〈M(t)M(t′)〉 = 〈M2(min(t, t′))〉. Then, in the scal-
ing regime 〈M2(t)〉 ∝ t1/2, leading to

ag(t, t
′) =

(
t′

t

)1/4

, for t > t. (30)

The normalized correlator of the global magnetization is
equal to exp[(u′ − u)/4] in the variable u = ln t. This
proves that the Gaussian process M(u) is stationary and
Markovian and that p(u) ∼ exp(−|u|/4). In the t variable
we get θ0 = 1/4 = (λ − d/2)/z, since λ = 1 and z = 2.
Remark that while M(t) is Markovian, S(t) at a given
point is not, neither is it Gaussian, and the computation
of θ was a real tour de force [24] which cannot be extended
to other systems.

To check the scaling assumption of equation (15) with
the exact value of θ0, we have simulated the Glauber Ising
model on a 200 000 spins chain with block size 1, 21, 41, 61,
91 (Fig. 3). Ten samples were averaged to obtain the final
data. The data collapse with θ0 = 1/4 is very good and
the scaling function has the expected behavior: a power
law divergence with exponent θ0 at small argument and
an algebraic decay with exponent θ at large argument.

One-dimensional model A

In one dimension, deterministic and stochastic models
are known to lead to different growth laws and corre-
lations [25]. For instance, in the one dimensional noise-
less model A, domain walls have a weak attractive in-
teraction decreasing exponentially with the distance, and
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Fig. 3. Scaling of the block persistence probability pl(t) for a
one-dimensional spin chain (200 000 spins, 10 samples), with
block size l = 1, 21, 41, 61, 91 (from bottom to top in the right
part of the insert). l = 1 is omitted in the scaling, and the
data collapse improves as the block size increases. As expected
pl(t) ∼ t−θ0 for t � l2 and pl(t) ∼ t−θ for t � l2 (with
θ0 = 1/4 and θ = 3/8).

L(t) ∝ ln t, whereas in the discrete stochastic Glauber
models, walls do not interact but perform simple ran-
dom walks and annihilate when they collide, leading to
L(t) ∝

√
t.

Model A is interesting, because it can be mapped on
a simple deterministic model of charge aggregation [25–
29]. In this model, domains of “+” and “−” phase evolve
the following way. At each step, the smallest domain I0
(length l(I0)) is changed sign and merged with its two
neighbors I1 and I2, to give a domain of length l(I0) +
l(I1) + l(I2). To compute the domain size distribution,
the sign of the domains can be forgotten and one can
easily show that no correlations develop in the system.
The mean-field equations are exact and can be solved for
the scaling function of the size distribution. In this model,
the time variable is the minimum length l0.

Bray et al. have shown that the local persistence expo-
nent θ [28] and the autocorrelation λ [29] have a geometri-
cal interpretation in this model. For instance, defining for
each domain the fraction of persistent spins d(I), the new
interval obtained in one step of the aggregation model
has d(I) = d(I1) + d(I2), and the total fraction of per-
sistent spins can be computed in mean field since there
are no correlations for d as well. The exact results are
θ = 0.17504588... and λ = 0.6006165... These exponents
are solutions of implicit nonlinear equations.

As far as the global persistence exponent is con-
cerned, we have to consider explicitly “+” and “-” do-
mains. Spatial correlations are still irrelevant, and the
sign-length distribution function evolves according to rate
equations [29]. However, this simplification is not sufficient
to allow the computation of θ0. To understand the origin
of the difficulty, let us consider a discrete lattice leading
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Fig. 4. Scaling of the block persistence probability obtained
from simulations of the domain aggregation model equivalent
to the deterministic one-dimensional model A, on a chain with
106 sites, l = 71, 81, 101, 111, 131, 161, 191, 211. Excellent scal-
ing is found for θ0 = 0.165.

to integer values of l(I). To increase the minimum domain
length in the system from l0 to l0 + 1, one has to remove
n(l0) domains. In each coalescence event, l0 spins change
sign leading to δM = ± 2l0, depending on the sign of the
domain. The total change in magnetization ∆M is there-
fore equal to −2l0 δρ(l0), where δρ(l) = n+(l) − n−(l)
is the (algebraic) excess density of positive domains of
length l. This quantity, as well as the magnetization it-
self M =

∑
l δρ(l), is a fluctuation around a zero mean

value, and is expected to be Gaussian (for an infinite sys-
tem), with a variance 〈δρ2〉 ∝ n̄(l), where n̄(l) is the total
average density of domains of length l.

It is easily shown from the mean-field equations that
n̄(l0) ∝ 1/l20 in the scaling (large l0 regime). Therefore,
the magnetization increment is a Gaussian variable with
variance 2l0n̄(l0) of order 1. If we assume (i) no long range
correlations between the increments and (ii) no correlation
between M and its increments, at least for small M , then
M performs a simple random walk, leading to θ0 = 1/2.
While assumption (i) is very reasonable, assumption (ii)
is much more questionable, as it seems intuitive, although
not compelling, that δρ(l0) is more likely to have the sign
of M , leading to a faster decay of the global persistance
and θ < 1/2. This intuition is confirmed by numerical
simulations of the domain aggregation model. Block per-
sistence data are presented in Figure 4 for a L = 106

chain (30 samples). The best scaling was obtained for
θ0 = 0.165, much smaller than 1/2. The profile of the
scaling function in the cross-over region is quite different
from the stochastic Glauber model. The Markovian scal-
ing law would lead to θ0 = λ− d/2 ≈ 0.1 (z = 1 since the
time variable is the dynamical length scale). Hence, for
this model we have θ0 > λ− d/2. To try to determine θ0

analytically, one would have to compute the correlations of
the fluctuations δρ, which does not seem easy, even using
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Fig. 5. Block persistence at T = 0 obtained from simulation
of the nonconserved Ising model on a 20002 lattice, for l =1, 5,
9, 15, 19, 25, and 31 (from bottom to top in the insert). pl(t)
decays as t−θ0 at early time and as t−θ at large time. Excellent
scaling is then obtained taking θ0 = 0.09.

the mean-field rate equations as dynamics from an initial
random domain distribution.

Two-dimensional Glauber Ising model

d = 1 is quite special because T = 0 is also the critical
temperature, and persistence can only be defined at T = 0.
Now we move to the d = 2 Glauber Ising model, for which
block scaling will lead to a definition of θ at finite temper-
ature. It is also interesting to determine θ0 which could
only be roughly evaluated by the direct method [22] de-
spite much numerical effort. Comparatively, block scaling
is a very easy and reliable method. We performed simula-
tions on a 20002 lattice with blocks of linear size 1, 5, 9,
15, 19, 25, and 31. 20 samples were averaged to obtain the
final data presented in Figure 5. We find excellent scaling,
with θ0 = 0.09. The uncertainty in the data collapse is
roughly of 1% on θ0. This value of θ0 is compatible with
the range 0.06 ∼ 0.11 found by Cornell and Sire [22]. The
Markovian value of zθ0 would be 11/8 = 1.375 (λ = 5/4),
and for this model we have θ0z < d− λ/2.

Two-dimensional Ginzburg-Landau equation

We can also simulate the time-dependent Ginzburg-
Landau equation (Fig. 6), corresponding to the continuous
model A,

∂tϕ = ∇2ϕ+ aϕ(1− ϕ2). (31)

Starting from an uncorrelated Gaussian initial condition,
one can solve the equation using a finite differences scheme
and compute pl(t) for different block sizes. Using block
scaling, we can determine θ0 and θ. For both exponents, we
find a value somewhat smaller than for the Glauber Ising
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Fig. 6. Block persistence at T = 0 obtained from simulation
of the time dependent Ginzburg-Landau equation at zero tem-
perature on a 7002 grid, for l =9, 11, 13, 15, 17 and 19 (from
bottom to top in the insert). The scaling presented is obtained
taking θ0 = 0.06. The large time decay of pl(t) corresponds to
θ = 0.2, with significant curvature though.

model: θ0 = 0.06 < 0.09 and θ = 0.20 < 0.22 (the value of
θ has been also computed by Cornell [30]). For θ, the large
time decay of pl(t) shows significant curvature and the ef-
fective exponent seems to increase with time. The scaling
function cannot be superposed with the scaling function
of the Ising model. Moreover, the fact that both models
have different θ0 shows that the two-time correlations of
the global magnetization (which solely determine θ0) are
different in the scaling regime. This suggests that model
A could be in a different universality class from the Ising
model. This was also suggested by Rutenberg [31] in a re-
cent paper, as he argued that model-dependent anisotropy
in the correlation function (due for instance to the lattice)
does not vanish in the scaling regime.

One-dimensional XY model

The one-dimensional nonconserved XY model is exactly
soluble [1,32] and is quite special as for short-ranged initial
correlation the structure factor does not exhibit conven-
tional scaling, and the growth exponent z = 4 in contrast
with general results for nonconserved vector spin systems.

The order parameter is a unitary two-dimensional vec-
tor ϕ, defined by its phase α(x, t). The equation of motion
is simply a diffusion equation

∂tα = ∂2
xxα, (32)

with a Gaussian initial condition,

P ({αk(0)}) ∝ exp

(
−
∑
k

βk

2
αk(0)α−k(0)

)
. (33)

The correlation function C(r, t1, t2) = 〈cos[α(r, t1) −
α(r, t2)]〉 depends on the initial condition. For a finite
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correlation length in the initial condition βk = (ξ/2)k2,
C(r, t, t′) does not have the usual scaling form [1]. As a
consequence, the normalized correlator of the magnetiza-
tion is not a function of t/t′.

Now, if the initial correlator has a power law decay
C(r, 0) ∼ r−γ/π, the general scaling form is recovered,
with

C(r, t, t′) = f

(
r

√
t+ t′

)[
4t1t2

(t+ t′)2

] γ
4π
, (34)

with f(x) ∝ x−γ/π [1]. For γ > π, the spatial correlations
of the order parameter decay sufficiently fast for the cen-
tral limit theorem to be valid (see e.g. [33]). Therefore,
the magnetization is still Gaussian, and the global persis-
tence probability, now defined as the probability that a
component of the magnetization has never changed sign,
is determined by the normalized correlator

ag(t, t
′) =

[
4tt′

(t+ t′)2

]γ−π
4π

, (35)

which continuously depends on γ. This is the local corre-
lator of the diffusion equation in dimension d = (γ−π)/π.
Since the diffusing field is Gaussian, we conclude that θ0

for the one dimensional XY model with C(r, t = 0) ∼
r−γ/π is equal to θ for the diffusion equation in dimension
(γ − π)/π, a quite surprising result.

Before moving to finite temperature, let us mention
that in a recent paper [34], Hinrichsen et al. have used
our method to study persistence for a directed percolation
model.

5 Block persistence at finite temperature

Although block persistence is useful even at zero tempera-
ture, our main concern remains finite temperature, which
we discuss now. The main idea is that because the correla-
tion length is finite at finite time, the relative fluctuations
of the block variables vanish as l−d/2 when the size of
the blocks is increased, and therefore the large block limit
corresponds to no fluctuations at all, i.e., zero tempera-
ture. In fact this picture is just a naive justification of the
renormalization group flow for coarsening. One has to sin-
gle out T = Tc where the relative fluctuations diverge, as
the equilibrium magnetization vanishes, and for which a
different scaling arises.

5.1 T < Tc

Let us first consider 0 < T < Tc. The difficulty in defining
a persistence exponent comes from the fact that a spin
may flip due to thermal fluctuations, leading to an ex-
ponential decay p(t) ∼ exp(−t/τ). Indeed, at T = 0, a
spin flips only when it is crossed by an interface between
a + and a − domain, whereas at finite temperature, the
dominating process at late time, when the domains are

large, is the flip of a spin within a domain due to thermal
fluctuations. Therefore, at low temperature, it is natural
from classical kinetics intuition to expect an Arrhenius law
τ ∼ exp(−∆E/T ), where ∆E is the energy barrier to flip
a spin (or a block) within an ordered domain. As T → 0,
τ diverges and p crosses over to a power law.

Arrhenius laws are common enough in physics and
chemistry, and arise each time a fluctuating process has
to cross a finite barrier. It is useful, though, to work out
the random process viewpoint, to clearly understand how
τ should behave with l.

Let us consider a block of linear size l, and spin
block variables ϕl. When L(t) is large enough, the sys-
tem can be considered locally at equilibrium inside a
domain, and, since there are no long-range correlations,
〈ϕl(t)〉 ≈ ld〈ϕ〉eq and (∆ϕl)

2 = 〈ϕ2
l (t)〉 − 〈ϕl(t)〉

2 ≈
ld(∆ϕ)2. Therefore the relative fluctuation of ϕl has the

scaling ∆ϕl/〈ϕl〉 ∝
√
T/ld.

Thus pl(t) is essentially the probability that the sta-
tionary random process ϕl(t) with mean value of order ld

and fluctuations of the same order has never crossed zero.
In other words, it is the survival probability of a stationary
walkerX(t) = (ϕl(t)−〈ϕl〉)/〈ϕl(t)〉, with zero mean and a
mean square fluctuation 〈X2〉 = aT/ld, and an absorbing
boundary at x = 1. To simplify, let us assume that X(t)
is Gaussian and Markovian. Then one can write a simple
Langevin equation,

Ẋ(t) = −γX(t) + η(t) (36)

with a Gaussian white noise η(t) with 〈η(t)η(t′)〉 = 2aT/ld

δ(t − t′). In exponential time u = e2γt, the new random
variable Y (t) = 2γ

√
uX performs a simple random walk,

Ẏ = ξ(t), (37)

where ξ(t) = η/
√
u is a new Gaussian white noise, with

〈ξ(u)ξ(u′)〉 = 4γaT/ldδ(u−u′). Hence, pl(u) is the survival
probability of a simple one-dimensional random walker
with diffusion coefficient D = 2aT/ld, starting from x = 0
with a moving absorbing wall at x(u) =

√
u. The survival

probability is just,

S(u) =

∫ √u
−∞

P (x, u)dx, (38)

where P (x, u) is the presence probability of the walker.
P (x, u) is the solution of the diffusion equation with an
absorbing boundary condition at x =

√
u. When the wall

motion is much faster than the diffusion of the walker, i.e.
D� 1, which corresponds to small T or large l (small fluc-
tuations), P (x, u) can be well approximated by a Gaussian
distribution with a time dependent weight S(u) [35],

P (x, u) =
S(u)
√

4πDu
e−

x2

4Du , (39)

where S(u) is determined by equating the mass loss
rate with the flux of mass through the moving wall.
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At large u, S(u) decays with a power law u−β and β =
(4πD)−1/2 exp(−1/4D). Since pl(t) = S(e2γt), we recover
the heuristic Arrhenius law with,

τ = 1/(2γβ) =

√
2πaT

γ2ld
exp[ld/(8aT )]. (40)

The constant a is a slowly varying function of the equi-
librium correlation length but does not depend on l for
large l.

The important point is that the effective temperature
entering the Arrhenius law of the spin blocks is cut by
a factor ld and that τ diverges very quickly when l is
increased, leading to a fast cross over to the T = 0 be-
havior. Admittedly, the actual stochastic process ϕl(t) is
certainly non-Markovian. However, for l much bigger than
the equilibrium correlation length, it is nearly Gaussian
from the central limit theorem. Moreover, its correlator
C(t) = 〈ϕl(t)ϕl(0)〉 − 〈ϕl(0)〉2 can be bounded by two
Markovian exponential correlators (because there is no
long range correlation in time at equilibrium), and thus
the Arrhenius law still holds with proper constants in-
serted (although the power law in the prefactor may be
modified), from the discussion of Section 2.

For t� τ , pl(t) is expected to behave in a similar way
as for T = 0, and we expect

pl(t) ∼ l
−zθ0f(t/lz) exp[−t/τ(l, T )], (41)

with two different cross-over times. However, in the scal-
ing limit l →∞, τ diverges much faster than lz, entailing
that the exponential part does not scale. Hence, the scal-
ing form of pl(t) should be equation (15). Moreover, from
the universality of the domain wall dynamics for T < Tc,
the scaling function g should be the same as at zero tem-
perature, up to an overall temperature dependent multi-
plicative factor. As for the scaling function f , we have to
take into account a temperature dependent multiplicative
constant in L(t) (see below).

To illustrate these ideas, we have performed simula-
tions of the two-dimensional Glauber Ising model at finite
temperature on a 10002 lattice. Figure 7 presents results
at T = 2Tc/3 for blocks of size l =1, 3, 5, 7, 9, 11 and 13.
The exponential decay is clearly visible for l = 1 and l = 3.
However, for larger blocks, τ is bigger than the simulation
time, and pl(t) has the T = 0 behavior, with a power law
decay with exponent θ fully compatible with the T = 0
value (θ = 0.22), for t � l2, and a power law decay with
exponent θ0, for t < l2, just as expected. Figure 8 shows
the scaling function at T = Tc/2 (where the approach to
scaling is faster) obtained with the zero temperature value
θ0 = 0.09,for l=7, 9, 11 and 13. The data collapse is really
excellent.

The temperature universality of the scaling function is
illustrated in Figure 9. We plot the quantity f = l2θ0pl(t)
versus x = t/l2 for a set of zero temperature data, and
f = a1l

2θ0pl(t) versus x = a2t/l
2 for Tc/2 data, for blocks

of size 7, 9, 11 and 13. The constants a1 and a2 are the
same for all sizes, and are adjusted to superpose the two
sets of data. a2 arises from the temperature dependence
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Fig. 7. pl(t) for the two dimensional Ising model at T = 2Tc/3,
and block sizes l =1, 3, 5, 7, 9, 11 and 13. The exponential
decay of pl(t) ∼ e−t/τ is clearly visible for l = 1 and l = 3,
however for l = 5, the exponential regime is already repelled
at times longer than the simulation time, in agreement with
the expected fast divergence τ ∼ exp(al2/T ). For l > 5, only
the power law zero-temperature like regime is to be seen.
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Fig. 8. pl(t) expressed in scaling form for T = Tc/2, and block
sizes l = 7, 9, 11, 13, using the same value for 2θ0 = 0.18 as in
the T = 0 case. Note the similarity with the T = 0 scaling
function of Figure 1.

of the prefactor of t1/2 in L(t) (the natural time variable)
and a1 is the overall temperature dependent multiplica-
tive discussed above. The superposition obtained is really
excellent and assesses the expected universality of the scal-
ing of block persistence, in a very similar way as what is
known for the equal-time two-point spin correlation func-
tion [1].

Thus, block scaling leads to a definition of θ at fi-
nite temperature as the exponent of the algebraic de-
cay of the scaling function f(x). For the two-dimensional
Ising model, the temperature independence of θ obtained
with this method confirms the results obtained with Der-
rida’s definition, but the universality is stronger, since
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Fig. 9. Universality of the scaling function for block persis-
tence. We show the superposition of scaling data correspond-
ing to T = 0 and T = Tc/2. For T = 0, we (double-log)
plot f = l2θ0pl(t) versus x = t/l2, whereas for T = Tc/2 we
plot f = a1l

2θ0pl(t) versus x = a2 t/l
2, with a1 = 1.07 and

a2 = 1.26. The excellent superposition of the two scaling func-
tions assesses the universality.

the whole block persistence scaling function is universal.
This universality arises from general arguments and
should be observed for generic systems.

Note that universality would rather be expressed in
terms of L(t) than in terms of t. This is especially rele-
vant for the three dimensional Glauber Ising model with
nearest neighbors interactions on the cubic lattice. Numer-
ical simulations [3,14] at T = 0 lead to θ ≈ 0.17, whereas
at finite temperature our method leads to θT>0 ≈ 0.26
in agreement with results obtained by Stauffer [10] using
Derrida’s definition. For this problem, seemingly due to
lattice effects, L(t) does not grow as t1/2 at zero tempera-
ture, but as t0.33 [36]. At finite temperature, lattice effects
are overcome, and one recovers the usual growth law. Now
if the block scaling function g is universal, one should have
the same value of θz at any temperature. From numerical
results we obtain θz = 3.0 × 0.17 = 0.51 at T = 0 and
θz = 0.26× 2 = 0.52 at finite T , which actually confirms
this universality. Note that these values of θz are in good
agreement with an approximate continuous theory [14].

Block persistence is also very useful to study persis-
tence for the q-state Potts model, as zero temperature
dynamics show blocking effects at zero temperature on
the square lattice with nearest neighbor interactions [37].
Working at finite temperature is a more satisfactory way
of overcoming blocking effects than changing the lattice
type or including next nearest neighbors interactions. Der-
rida used his comparison method to study the q = 7 Potts
model. His data seemed to suggest a temperature depen-
dence of θ [9].

On the basis of the present work, we would rather ex-
pect θ to be independent of T , at least with our definition.
To address this question, we have performed simulations
of the q = 7 Potts model at T = Tc/3 and T = 2Tc/3,
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Fig. 10. Scaling of block persistence for the 7-state Potts
model at finite temperature T = Tc/3 and T = 2Tc/3, from
simulations on a 10002 lattice for blocks of size l =9, 11, 15, 19
and 25 (13 samples). Data are noisier than for the Ising model,
but acceptable scaling is obtained with θ0 = 0.3.

on a 10002 lattice. We have computed pl(t) for l =1, 3, 9,
11, 15, 19 and 25, where the block variables are defined
through a majority rule. For both temperature, acceptable
scaling is obtained for θ0 = 0.3, but the scaling is not as
good as for the Ising model, and would surely be improved
by using larger block and simulating longer times. More-
over, nonscaling transients extend over quite a long period
of time for T = 2Tc/3. The extraction of θ from the decay
of p9(t) leads to θ(2Tc/3) ≈ 0.485 and θ(Tc/3) = 0.47.
The discrepancy is not really significant compared to nu-
merical uncertainties, and is much smaller anyway than
for Derrida’s data [9], who found θ(2Tc/3) ≈ 0.55 and
θ(Tc/3) ≈ 0.4. Hence, θ does not seem to depend on
temperature. This is confirmed by the comparison of the
two scaling functions, which can once again be superposed
through a global rescaling.

Finally, the value of θ compares well with zero temper-
ature data obtained by Derrida et al. [37]. These authors
simulated the next nearest neighbor interactions Potts
model to avoid blocking effects. Data for p(t) showed sig-
nificant curvature, due to the fact that the effective z expo-
nent increases with time, and better results were obtained
for the exponent ϕ defined as p(t) ∼ L(t)−ϕ ∼ E(t)ϕ,
where E is the energy difference with the fundamental
state. These authors found ϕ = 1.01 for the q = 7 Potts
model. Assuming ϕ = θz with the asymptotic value z = 2,
their data lead to θ ≈ 0.5, in acceptable agreement with
our results at finite temperature.

5.2 T = Tc

The naive kinetic argument giving the scaling of the relax-
ation rate of pl(t) is bound to break down at the critical
temperature for several reasons. We know from explicit
renormalization group analysis [38] that Tc is a fixed point
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Fig. 11. Scaling of the block persistence probability at Tc
from simulations of the two-dimensional Ising model on a 10002

lattice (15 samples) and blocks of size l =5, 9, 13, 17, 21 and
27. We have taken z = zc = 2.17 and adjusted θc. The best
collapse is obtained for θc = 0.28.

for the dynamics. Hence in contrast with T < Tc, the ther-
mal decay of the persistence probability must scale. Since
the equilibrium magnetization is zero, one can no longer
make a distinction between a slow flip mode due to inter-
face motion and a fast flip mode due to thermal equilib-
rium fluctuations within domains. There are no domain
walls in the system, and the relevant length scale is the
time dependent correlation length ξ(t) ∼ t1/zc . During
the dynamics, patches of correlated spins of length ξ(t)
appear in the system. These large patches have a large
life time due to critical slowing down. If we consider a
block of spins inside one of these patches, the typical time
required to flip the spin of the block should be roughly
speaking of the order of the time required to relax a fluc-
tuation of wave vector ≈ 2π/l in the critical equilibrium
state. Hence, one should have pl(t) ∼ exp(−ωc(2π/l)t)
where ωc(k) is the characteristic critical relaxation fre-
quency and scales as kzc [38]. This leads to an exponential
decay pl(t) ∼ exp(−at/lzc). Therefore, as predicted by the
renormalization group argument, the exponential decay of
the persistence probability scales and we must have

pl(t) ∼ l
−θczcg(ξ(t)/l) = l−θczcf(t/lzc) (42)

in the scaling limit l → ∞ with a fixed ratio ξ/l, where
f(x) ∼ x−θc when x → 0 and f(x) ∼ e−ax when x →
∞. The exponent θc is the global persistence exponent at
Tc [7].

This scaling theory was checked for the two-
dimensional Glauber Ising model from simulations on a
10002 lattice and blocks of size 1, 5, 9, 13, 17, 21 and 27.
Fifteen samples were averaged to obtain the data shown
in Figure 11. Excellent scaling is found with zc = 2.17
and θc = 0.28, which is also in agreement with the value
of θc obtained by fitting the small x power law. The
scaling function has an exponentially fast decay at large

argument, as expected. The value obtained for θc yields
θczc ≈ 0.607, some 20% bigger than the value found by
direct determination of the global persistence probability
[7,18,19], and the reason for this discrepancy is unclear.

6 Conserved models

The amount of certitudes we have for conserved order pa-
rameter dynamics is by far much smaller than for the non-
conserved case. The large n limit is quite pathological as it
exhibits multiscaling, which is not observed in simulations.
The only exact result is the celebrated Lifshitz-Slyozov-
Wagner (LSW) theory [39,40] for the limit of a vanishing
concentration of minority phase. In this limit, well sepa-
rated droplets of minority phase are embedded in a matrix
of majority phase. This spatial structure is very different
from the labyrinth-like domain structure of the equal con-
centration case. The typical length scaleL(t) grows as t1/3

(z = 3) and one can compute the scaling function for equal
time correlations. Recently, Lee and Rutenberg [41], have
shown that λ = d for LSW.

For finite concentrations of the minority phase, and
especially for the zero-magnetization case, the situation
was more controversial. While the t1/3 growth law seems
well established since the numerical work of Huse [42],
no conclusive result for λ is available. Numerical simu-
lations of conserved models are difficult because the dy-
namics are much slower than for the nonconserved models,
and that corrections to scaling are important even at long
simulation times (see below). Moreover, the spin-exchange
Kawasaki dynamics freeze at zero temperature, and simu-
lations must be performed at finite temperature, and the
standard definition of persistence cannot be used. This ex-
plains why results for conserved persistence reduce to an
analytical computation of θ in the LSW theory [41]. Actu-
ally, in the absence of numerical simulations, the question
of whether the persistence probability has a power law
decay or not is open, even if the answer is intuitively yes.
Using block persistence, one can now extract information
from finite temperature simulations, and study persistence
for the Kawasaki d = 2 model. Numerical limitations due
to slow dynamics remain, however.

6.1 Block scaling for conserved models

Naively, we expect the same scaling as for nonconserved
dynamics (Eq. (15)), with the only difference that θ0 is
equal to zero due to the conservation of the global mag-
netization. It must be pointed out, however, that this as-
sumption is incorrect generally speaking, and the proper
scaling is

pl(t) ∼ l
−zθ′f [t/lz], (43)

where θ′ is an a priori nontrivial exponent not directly
related to global persistence. The scaling function f(x)
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diverges as x−θ
′

when x→ 0, and is expected to decay as
a power law x−θ at large x, θ being the local persistence
exponent.

The occurrence of a nontrivial θ′ arises convincingly
from a simple analytical argument based on the scaling of
correlations. From the scaling of the Fourier transform of
the two points correlator, C(k, t, t′) = Ldf(kL,L′/L), we
obtain for the correlator of block variables

Cl(t, t
′) =

∫
kl<1

ddk

(2π)d
C(k, t, t′) (44)

=

∫
u<(l/L)

ddu

(2π)d
f(u, L′/L).

Then, in the limit l → ∞ with a fixed ratio x = L/l and
y = L′/l, we obtain the expression of the correlator of
block variables in the block scaling regime,

Cl(t, t
′) ∝

∫ 1/x

0

ud−1f(u, x/y)du. (45)

This expression suggests a scaling form l−αg(L/l) for pl(t).
Moreover, we can investigate the asymptotic small x be-
havior of the scaling function g(x), since in this limit the
block variables are Gaussian and the persistence is fully
determined by Cl(t, t

′). Assuming quite generically that
f(u, x/y) = ujκ(x/y) + o(uj) , the small x and y asymp-
totic behavior of the normalized correlator is

al(x, y) ∼
(y
x

)(j+d)/2

κ(x/y). (46)

Since al(x, y) is a function of x/y, pl(t) scales as c0x
−α ∼

t−θ
′
, where α is a priori nontrivial and θ′ = α/z, leading

to the scaling of equation (43).
Equation (46) holds for nonconserved dynamics as well

as for conserved dynamics. For nonconserved coarsening
dynamics, the variance of the global magnetization C(k =
0, t, t) usually grows as L(t)d, leading to j = 0. It is easily
seen that the correlator of equation (46) is precisely equal
to the normalized correlator of the global magnetization.
Therefore, θ′ is equal to the global persistence exponent
θ0, as argued before.

For conserved dynamics, however, the normalized cor-
relator of the magnetization is 1, whereas al(x, y) is gener-
ally speaking a nontrivial function of x/y. Consequently,
θ′ is nontrivial and not equal to θ0 = 0. The interpreta-
tion of this result is that, for a block of finite size, three
regimes are observed. At early times, the magnetization
remains constant as if the block were infinite. In a second
regime, the finite size of the block becomes relevant, signif-
icantly breaking the magnetization conservation, and the
persistence decays as t−θ

′
. Finally, for L � l, the local

persistence decay is recovered. The point we make is that
the first constant magnetization stage does not generally
scale, and only the second “pseudo-global” persistence be-
havior appears in the scaling function. Nevertheless, for
a class of systems, κ(x/y) may be equal to (x/y)(d+j)/2,
leading to θ′ = 0. We present now some illustrative nu-
merical simulations for conserved dynamics.
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Fig. 12. Numerical results for the fraction of persistent spins
in the domain model corresponding to the T → 0 limit of the
Kawasaki Ising chain (106 sites, 12 samples). We find a power
law decay at large time with θ = 0.73.

6.2 1D-Kawasaki dynamics

One-dimensional spin-exchange dynamics (Kawasaki dy-
namics) are peculiar, as they do not coarsen at any
temperature. Indeed, since the critical temperature is
zero, coarsening does not occur at finite temperature,
whereas the system freezes at zero temperature. However,
Majumdar et al. [43,25] have shown that coarsening oc-
curs in the T → 0 limit in the rescaled time τ =
t exp(−4J/kbT ). The obtained dynamics is equivalent to a
domain diffusion model of Cornell et al. [44]. In this model,
domains of length L perform random walks with a diffu-
sion constant proportional to 1/L and coalesce. At small
finite temperature, this corresponds to the fact that a do-
main of + phase moves through the diffusion of an isolated
− spin detached with probability exp(−4J/kbT ) from a
neighboring − domain and reaching the other neighbor-
ing domain after about L2 steps of a random walk [43,44].
Majumdar et al. have argued that for this model λ = d,
which they have checked numerically [43].

The local persistence exponent of the one-dimensional
Kawasaki dynamics can be defined through this domain
model. We present on Figure 12 results of simulations of
the model on a L = 106 chain (10 samples). We observe a
power law decay with p(τ) ∝ τ−θ, with θ = 0.73. To our
knowledge, this is the first numerical demonstration of the
existence of a persistence exponent for a conserved model,
confirming the result obtained in the LSW limit by Lee
and Rutenberg [41]. Note that the persistence exponent
is much bigger than for Glauber dynamics (θ = 3/8) (see
below). The complexity of the aggregation model leaves
little hope of obtaining the exact value of θ for this model.

We have computed the block persistence probability
pl(t) for l =101, 131, 161, 191 and 211. Results are pre-
sented in scaling form in Figure 13. For increasing l, the
approach to scaling is very slow and although we have
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Fig. 13. Block persistence probability in scaling form (with
θ′ = 0) for the domain model corresponding to the T → 0 limit
of the Kawasaki Ising chain. Simulations were carried out for a
106 sites chain (12 samples) for blocks of size l =101, 131, 161,
191 and 211 (from top to bottom). The approach to scaling is
very slow when l is increased, but it is clearly visible that the
scaling function goes to a constant (θ′ = 0) as expected since
λ = d.

used very large blocks, the data collapse is poor. The pre-
sented scaling was obtained for θ′ = 0, and the collapse
was worse for positive θ′. A zero value of θ′ is also sug-
gested by the fact that the scaling function f(x) appears
to tend to a constant when x→ 0.

6.3 Deterministic domain model

To clearly illustrate the possible occurrence of a nontriv-
ial θ′, we have also simulated the zero temperature one-
dimensional Cahn-Hilliard equation (model B). Majum-
dar and Huse [25] have shown that the dynamics could
be mapped on a deterministic domain aggregation model.
In one step of the dynamics, the shortest domain I0 of
length l0 is localized and removed, the left (length ll) and
right (length lr) neighbors are merged. The length l0 is
dispatched between the right (lrr) and left (lll) second
neighbors (which have the same sign as I0), according to
lll = lll + l0l and lrr = lrr + l0r, with l0r + l0l = l0 and
l0r : l0l = ll : lr. These domain dynamics reflect the fact
that the shortest domain shrinks due to diffusion fluxes
from I0 to its second neighbors through its first neigh-
bors. The fluxes are proportional to e−2l0 , which makes
the shortest domain shrink much faster than other do-
mains. The flux to the right (resp. left) is proportional to
1/ll (resp. 1/lr), which leads to the above ratio of l0r and
l0l.

We have performed simulations of the domain model
on a chain of 106 sites (20 samples), for blocks of size
101, 131, 161, 191 and 211. The scaling function presented
in Figure 14 is qualitatively very different from the one
in Figure 12. In agreement with the general discussion
above and equation (43), we find a cross-over between
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Fig. 14. Scaling of the block persistence probability for the
domain aggregation model equivalent to the 1D zero tempera-
ture Cahn-Hilliard dynamics. Simulations were carried out on
a 106 sites chain, for blocks of size 101, 131, 161, 191, and 211.
For this model λ < d and the scaling function for block persis-
tence has a power law divergence at small x. Good scaling is
obtained with θ′ = 1.3, and we find θ = 0.62.

two exponents θ′ and θ. The best data collapse is ob-
tained for θ′ = 1.3, whereas we find θ = 0.62 (remark
however that the large x decay shows curvature). Unlike
one-dimensional Kawasaki dynamics, this system clearly
exhibits a nonzero θ′, and the scaling is really convinc-
ing. Remark that one-dimensional Kawasaki and Cahn-
Hilliard dynamics are also known to belong to different
classes as far as the autocorrelation exponent λ is con-
cerned: Kawasaki dynamics have a trivial λ = d whereas
λ is nontrivial (≈ 0.67) for Cahn-Hilliard dynamics [25].

6.4 Two-dimensional Kawasaki dynamics

Effective zero-temperature domain models cannot be used
successfully to avoid the freezing of the two-dimensional
Kawasaki dynamics, because of the complicated geome-
try of the domains. Using block persistence simulations
can be performed at finite temperature. As mentioned
above, simulations are difficult because the Kawasaki dy-
namics are very slow, and do not reach the pure t1/3

regime. Therefore, it is difficult to observe block scaling
and to extract the persistence exponent, and we have to
be satisfied with qualitative results. Figure 15 presents
data obtained for a 10002 systems with a simulation time
of 500 000 Monte-Carlo steps for blocks of size 3, 5, 7, 9,
11, and 15, and 2000 steps for l =15, 21, 25, 35, 45 and
55. The cross-over in the behavior of pl(t) corresponding
to L(t) ∼ l is visible for small blocks. At large time, we
observe a power law decay with a persistence exponent
θ ≈ 0.5. The actual value of θ is certainly bigger since
the effective z exponent increases with time and is still far
from its asymptotic value z = 3 (1/z ≈ 0.25 at the end
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Fig. 15. Results of simulations of the Kawasaki spin-exchange
dynamics on a 7002 lattice, for blocks of size l =1, 3, 5, 7, 9,
11 and 13 (one sample, 500 000 steps), 15, 21, 25, 35, 45, 55
(12 samples, 2000 steps).

of the simulation). Still, we acknowledge that these data
are not very conclusive.

It is not surprising to find a power law decay of the
persistence probability (in the block scaling or T → 0)
limit, because of the slow motion of interfaces, as for the
nonconserved case. What is less intuitive, is that θ is much
bigger for conserved dynamics than for nonconserved dy-
namics. However, one can understand that fast dynamics
may lead to a small θ, if one realizes that a fast moving do-
main wall will be ineffective in decreasing p(t) if it wipes
several times regions of spins that have already flipped.
Once again, we see that θ reflects very subtle effects.

At early times, when l is increased, we do not seem
to have a power law regime, suggesting θ′ = 0 for two-
dimensional Kawasaki dynamics, but because L(t) has
strong corrections to scaling, it is not clear that corre-
lations correctly scale in the time regime observe, and one
has to be careful. For large blocks and large time with
L(t) ∼ t1/3 � l, one might observe a power law.

7 Conclusion

In this article we have introduced the notion of block per-
sistence as a generalization of global and local persistence
probabilities, and as a way of giving a meaning to the
persistence exponent θ at finite temperature. Theoretical
arguments as well as results of simulations suggest that
the persistence exponents and the whole scaling function
of block persistence are temperature independent in the
whole T < Tc phase, which is conceptually speaking very
satisfactory. We have also shown that persistence expo-
nents arise for conserved models as well. It would also be
interesting to use block persistence for systems with con-
tinuous symmetries, for instance the Heisenberg model,
or more generally the O(n) model. A block spin would be

considered to flip whenever one of its components changes
sign. Actually, this definition was used in this article for
the large-n model.

Finally, the important question may be: What do we
learn from persistence? In fact, the justification for study-
ing such crude models as the one used in coarsening is uni-
versality, which states that most of the fine details of the
system are irrelevant for the study of the scaling regime.
Then the stake is to identify universality classes, to un-
derstand the parameters that determine them, and also
to identify universal quantities. The theoretical and nu-
merical study of persistence shows us, because it probes
temporal correlations very sensitively, that model univer-
sality is not as wide as it may have been hoped a priori
from equilibrium-based intuition. While universality with
respect to initial conditions, or interactions range, seems
to hold in most cases, the present work suggests that the
continuous model A and the Glauber Ising model in two
dimensions are in different universality classes (at least at
zero temperature), even if they have the same dimension-
ality, the same conservation law and both short-ranged
interactions. Hence, the existence of the lattice seems to
affect correlations even at large time. This could be related
to the pertaining of anisotropy at large time claimed by
Rutenberg in a recent work [31].

The authors have benefitted from interesting discussions with
S. Majumdar, B. Derrida, S. Cornell.
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